Quadratic reciprocity and Riemann’s non-differentiable function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Reciprocity

Quadratic Reciprocity is arguably the most important theorem taught in an elementary number theory course. Since Gauss’ original 1796 proof (by induction!) appeared, more than 100 different proofs have been discovered. Here I present one proof which is not particularly well-known, due to George Rousseau [2]. (The proof was rediscovered more recently by (then) high-schooler Tim Kunisky [1].) Alt...

متن کامل

Selmer Groups and Quadratic Reciprocity

In this article we study the 2-Selmer groups of number fields F as well as some related groups, and present connections to the quadratic reciprocity law in F . Let F be a number field; elements in F× that are ideal squares were called singular numbers in the classical literature. They were studied in connection with explicit reciprocity laws, the construction of class fields, or the solution of...

متن کامل

Quadratic Reciprocity I

We now come to the most important result in our course: the law of quadratic reciprocity, or, as Gauss called it, the aureum theorema (“golden theorem”). Many beginning students of number theory have a hard time appreciating this golden theorem. I find this quite understandable, as many first courses do not properly prepare for the result by discussing enough of the earlier work which makes qua...

متن کامل

Quadratic Reciprocity , after Weil

The character associated to a quadratic extension field K of Q, χ : Z −→ C, χ(n) = (disc(K)/n) (Jacobi symbol), is in fact a Dirichlet character; specifically its conductor is |disc(K)|. This fact encodes basic quadratic reciprocity from elementary number theory, phrasing it in terms that presage class field theory. This writeup discusses Hilbert quadratic reciprocity in the same spirit. Let k ...

متن کامل

Quadratic Reciprocity Revisited

We show that Gauss' Lemma implies Euler's version of the law of qua-dratic reciprocity directly, this yields a very simple proof of the well-known law. We also derive a new related identity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in Number Theory

سال: 2015

ISSN: 2363-9555

DOI: 10.1007/s40993-015-0015-5